Skip to content
Snippets Groups Projects
Select Git revision
  • 38d095a57395f4aa8c85069ce53f9fb7883986d6
  • master default protected
  • release/202005
  • release/202001
  • release/201912
  • release/201911
  • release/releaseWindowsTestOne
  • release/windowsReleaseTest
  • release/releaseTest
  • release/releaseWindowsTest
  • release/201910
  • release/qt/201910
  • release/windows-test/201910
  • release/201908
  • release/201906
  • release/201905
  • release/201904
  • release/201903
  • release/201902
  • release/201901
  • release/201812
  • 4.0.0
  • 2.2.0
  • 2.1.0
  • 2.0.1
  • 2.0.0
  • 1.4.1
  • 1.4.0
  • 1.3.0
  • 1.2.0
  • 1.1.0
31 results

statusicon.h

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    FixedHash.h 15.28 KiB
    /*
    	This file is part of cpp-ethereum.
    
    	cpp-ethereum is free software: you can redistribute it and/or modify
    	it under the terms of the GNU General Public License as published by
    	the Free Software Foundation, either version 3 of the License, or
    	(at your option) any later version.
    
    	cpp-ethereum is distributed in the hope that it will be useful,
    	but WITHOUT ANY WARRANTY; without even the implied warranty of
    	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    	GNU General Public License for more details.
    
    	You should have received a copy of the GNU General Public License
    	along with cpp-ethereum.  If not, see <http://www.gnu.org/licenses/>.
    */
    /** @file FixedHash.h
     * @author Gav Wood <i@gavwood.com>
     * @date 2014
     *
     * The FixedHash fixed-size "hash" container type.
     */
    
    #pragma once
    
    #include <array>
    #include <cstdint>
    #include <algorithm>
    #include <random>
    #include <sstream>
    #include <opendht/rng.h>
    
    #include "CommonData.h"
    
    namespace dev
    {
    
    /// Compile-time calculation of Log2 of constant values.
    template <unsigned N> struct StaticLog2 { enum { result = 1 + StaticLog2<N/2>::result }; };
    template <> struct StaticLog2<1> { enum { result = 0 }; };
    
    extern dht::crypto::random_device s_fixedHashEngine;
    
    /// Fixed-size raw-byte array container type, with an API optimised for storing hashes.
    /// Transparently converts to/from the corresponding arithmetic type; this will
    /// assume the data contained in the hash is big-endian.
    template <unsigned N>
    class FixedHash
    {
    public:
    	/// The size of the container.
    	enum { size = N };
    
    	/// A dummy flag to avoid accidental construction from pointer.
    	enum ConstructFromPointerType { ConstructFromPointer };
    
    	/// Method to convert from a string.
    	enum ConstructFromStringType { FromHex, FromBinary };
    
    	/// Method to convert from a string.
    	enum ConstructFromHashType { AlignLeft, AlignRight, FailIfDifferent };
    
    	/// Construct an empty hash.
    	FixedHash() { m_data.fill(0); }
    
    	/// Construct from another hash, filling with zeroes or cropping as necessary.
    	template <unsigned M> explicit FixedHash(FixedHash<M> const& _h, ConstructFromHashType _t = AlignLeft) { m_data.fill(0); unsigned c = std::min(M, N); for (unsigned i = 0; i < c; ++i) m_data[_t == AlignRight ? N - 1 - i : i] = _h[_t == AlignRight ? M - 1 - i : i]; }
    
    	/// Convert from unsigned
    	explicit FixedHash(unsigned _u) { toBigEndian(_u, m_data); }
    
    	/// Explicitly construct, copying from a byte array.
    	explicit FixedHash(bytes const& _b, ConstructFromHashType _t = FailIfDifferent) { if (_b.size() == N) memcpy(m_data.data(), _b.data(), std::min<unsigned>(_b.size(), N)); else { m_data.fill(0); if (_t != FailIfDifferent) { auto c = std::min<unsigned>(_b.size(), N); for (unsigned i = 0; i < c; ++i) m_data[_t == AlignRight ? N - 1 - i : i] = _b[_t == AlignRight ? _b.size() - 1 - i : i]; } } }
    
    	/// Explicitly construct, copying from a byte array.
    	explicit FixedHash(bytesConstRef _b, ConstructFromHashType _t = FailIfDifferent) { if (_b.size() == N) memcpy(m_data.data(), _b.data(), std::min<unsigned>(_b.size(), N)); else { m_data.fill(0); if (_t != FailIfDifferent) { auto c = std::min<unsigned>(_b.size(), N); for (unsigned i = 0; i < c; ++i) m_data[_t == AlignRight ? N - 1 - i : i] = _b[_t == AlignRight ? _b.size() - 1 - i : i]; } } }
    
    	/// Explicitly construct, copying from a bytes in memory with given pointer.
    	explicit FixedHash(byte const* _bs, ConstructFromPointerType) { memcpy(m_data.data(), _bs, N); }
    
    	/// Explicitly construct, copying from a  string.
    	explicit FixedHash(std::string const& _s, ConstructFromStringType _t = FromHex, ConstructFromHashType _ht = FailIfDifferent): FixedHash(_t == FromHex ? fromHex(_s, WhenError::Throw) : dev::asBytes(_s), _ht) {}
    
    	/// @returns true iff this is the empty hash.
    	explicit operator bool() const { return std::any_of(m_data.begin(), m_data.end(), [](byte _b) { return _b != 0; }); }
    
    	// The obvious comparison operators.
    	bool operator==(FixedHash const& _c) const { return m_data == _c.m_data; }
    	bool operator!=(FixedHash const& _c) const { return m_data != _c.m_data; }
    	bool operator<(FixedHash const& _c) const { for (unsigned i = 0; i < N; ++i) if (m_data[i] < _c.m_data[i]) return true; else if (m_data[i] > _c.m_data[i]) return false; return false; }
    	bool operator>=(FixedHash const& _c) const { return !operator<(_c); }
    	bool operator<=(FixedHash const& _c) const { return operator==(_c) || operator<(_c); }
    	bool operator>(FixedHash const& _c) const { return !operator<=(_c); }
    
    	// The obvious binary operators.
    	FixedHash& operator^=(FixedHash const& _c) { for (unsigned i = 0; i < N; ++i) m_data[i] ^= _c.m_data[i]; return *this; }
    	FixedHash operator^(FixedHash const& _c) const { return FixedHash(*this) ^= _c; }
    	FixedHash& operator|=(FixedHash const& _c) { for (unsigned i = 0; i < N; ++i) m_data[i] |= _c.m_data[i]; return *this; }
    	FixedHash operator|(FixedHash const& _c) const { return FixedHash(*this) |= _c; }
    	FixedHash& operator&=(FixedHash const& _c) { for (unsigned i = 0; i < N; ++i) m_data[i] &= _c.m_data[i]; return *this; }
    	FixedHash operator&(FixedHash const& _c) const { return FixedHash(*this) &= _c; }
    	FixedHash operator~() const { FixedHash ret; for (unsigned i = 0; i < N; ++i) ret[i] = ~m_data[i]; return ret; }
    
    	// Big-endian increment.
    	FixedHash& operator++() { for (unsigned i = size; i > 0 && !++m_data[--i]; ) {} return *this; }
    
    	/// @returns true if all one-bits in @a _c are set in this object.
    	bool contains(FixedHash const& _c) const { return (*this & _c) == _c; }
    
    	/// @returns a particular byte from the hash.
    	byte& operator[](unsigned _i) { return m_data[_i]; }
    	/// @returns a particular byte from the hash.
    	byte operator[](unsigned _i) const { return m_data[_i]; }
    
    	/// @returns an abridged version of the hash as a user-readable hex string.
    	std::string abridged() const { return toHex(ref().cropped(0, 4)) + "\342\200\246"; }
    
    	/// @returns a version of the hash as a user-readable hex string that leaves out the middle part.
    	std::string abridgedMiddle() const { return toHex(ref().cropped(0, 4)) + "\342\200\246" + toHex(ref().cropped(N - 4)); }
    
    	/// @returns the hash as a user-readable hex string.
    	std::string hex() const { return toHex(ref()); }
    
    	/// @returns a mutable byte vector_ref to the object's data.
    	bytesRef ref() { return bytesRef(m_data.data(), N); }
    
    	/// @returns a constant byte vector_ref to the object's data.
    	bytesConstRef ref() const { return bytesConstRef(m_data.data(), N); }
    
    	/// @returns a mutable byte pointer to the object's data.
    	byte* data() { return m_data.data(); }
    
    	/// @returns a constant byte pointer to the object's data.
    	byte const* data() const { return m_data.data(); }
    
    	/// @returns begin iterator.
    	auto begin() const -> typename std::array<byte, N>::const_iterator { return m_data.begin(); }
    
    	/// @returns end iterator.
    	auto end() const -> typename std::array<byte, N>::const_iterator { return m_data.end(); }
    
    	/// @returns a copy of the object's data as a byte vector.
    	bytes asBytes() const { return bytes(data(), data() + N); }
    
    	/// @returns a mutable reference to the object's data as an STL array.
    	std::array<byte, N>& asArray() { return m_data; }
    
    	/// @returns a constant reference to the object's data as an STL array.
    	std::array<byte, N> const& asArray() const { return m_data; }
    
    	/// Populate with random data.
    	template <class Engine>
    	void randomize(Engine& _eng)
    	{
    		for (auto& i: m_data)
    			i = (uint8_t)std::uniform_int_distribution<uint16_t>(0, 255)(_eng);
    	}
    
    	/// @returns a random valued object.
    	static FixedHash random() { FixedHash ret; ret.randomize(s_fixedHashEngine); return ret; }
    
    	template <unsigned P, unsigned M> inline FixedHash& shiftBloom(FixedHash<M> const& _h)
    	{
    		return (*this |= _h.template bloomPart<P, N>());
    	}
    
    	template <unsigned P, unsigned M> inline bool containsBloom(FixedHash<M> const& _h)
    	{
    		return contains(_h.template bloomPart<P, N>());
    	}
    
    	template <unsigned P, unsigned M> inline FixedHash<M> bloomPart() const
    	{
    		unsigned const c_bloomBits = M * 8;
    		unsigned const c_mask = c_bloomBits - 1;
    		unsigned const c_bloomBytes = (StaticLog2<c_bloomBits>::result + 7) / 8;
    
    		static_assert((M & (M - 1)) == 0, "M must be power-of-two");
    		static_assert(P * c_bloomBytes <= N, "out of range");
    
    		FixedHash<M> ret;
    		byte const* p = data();
    		for (unsigned i = 0; i < P; ++i)
    		{
    			unsigned index = 0;
    			for (unsigned j = 0; j < c_bloomBytes; ++j, ++p)
    				index = (index << 8) | *p;
    			index &= c_mask;
    			ret[M - 1 - index / 8] |= (1 << (index % 8));
    		}
    		return ret;
    	}
    
    	/// Returns the index of the first bit set to one, or size() * 8 if no bits are set.
    	inline unsigned firstBitSet() const
    	{
    		unsigned ret = 0;
    		for (auto d: m_data)
    			if (d)
    				for (;; ++ret, d <<= 1)
    					if (d & 0x80)
    						return ret;
    					else {}
    			else
    				ret += 8;
    		return ret;
    	}
    
    	void clear() { m_data.fill(0); }
    
    private:
    	std::array<byte, N> m_data;		///< The binary data.
    };
    
    template <unsigned T>
    class SecureFixedHash: private FixedHash<T>
    {
    public:
    	using ConstructFromHashType = typename FixedHash<T>::ConstructFromHashType;
    	using ConstructFromStringType = typename FixedHash<T>::ConstructFromStringType;
    	using ConstructFromPointerType = typename FixedHash<T>::ConstructFromPointerType;
    	SecureFixedHash() = default;
    	explicit SecureFixedHash(bytes const& _b, ConstructFromHashType _t = FixedHash<T>::FailIfDifferent): FixedHash<T>(_b, _t) {}
    	explicit SecureFixedHash(bytesConstRef _b, ConstructFromHashType _t = FixedHash<T>::FailIfDifferent): FixedHash<T>(_b, _t) {}
    	explicit SecureFixedHash(bytesSec const& _b, ConstructFromHashType _t = FixedHash<T>::FailIfDifferent): FixedHash<T>(_b.ref(), _t) {}
    	template <unsigned M> explicit SecureFixedHash(FixedHash<M> const& _h, ConstructFromHashType _t = FixedHash<T>::AlignLeft): FixedHash<T>(_h, _t) {}
    	template <unsigned M> explicit SecureFixedHash(SecureFixedHash<M> const& _h, ConstructFromHashType _t = FixedHash<T>::AlignLeft): FixedHash<T>(_h.makeInsecure(), _t) {}
    	explicit SecureFixedHash(std::string const& _s, ConstructFromStringType _t = FixedHash<T>::FromHex, ConstructFromHashType _ht = FixedHash<T>::FailIfDifferent): FixedHash<T>(_s, _t, _ht) {}
    	explicit SecureFixedHash(bytes const* _d, ConstructFromPointerType _t): FixedHash<T>(_d, _t) {}
    	~SecureFixedHash() { ref().cleanse(); }
    
    	SecureFixedHash<T>& operator=(SecureFixedHash<T> const& _c)
    	{
    		if (&_c == this)
    			return *this;
    		ref().cleanse();
    		FixedHash<T>::operator=(static_cast<FixedHash<T> const&>(_c));
    		return *this;
    	}
    
    	using FixedHash<T>::size;
    
    	bytesSec asBytesSec() const { return bytesSec(ref()); }
    
    	FixedHash<T> const& makeInsecure() const { return static_cast<FixedHash<T> const&>(*this); }
    	FixedHash<T>& writable() { clear(); return static_cast<FixedHash<T>&>(*this); }
    
    	using FixedHash<T>::operator bool;
    
    	// The obvious comparison operators.
    	bool operator==(SecureFixedHash const& _c) const { return static_cast<FixedHash<T> const&>(*this).operator==(static_cast<FixedHash<T> const&>(_c)); }
    	bool operator!=(SecureFixedHash const& _c) const { return static_cast<FixedHash<T> const&>(*this).operator!=(static_cast<FixedHash<T> const&>(_c)); }
    	bool operator<(SecureFixedHash const& _c) const { return static_cast<FixedHash<T> const&>(*this).operator<(static_cast<FixedHash<T> const&>(_c)); }
    	bool operator>=(SecureFixedHash const& _c) const { return static_cast<FixedHash<T> const&>(*this).operator>=(static_cast<FixedHash<T> const&>(_c)); }
    	bool operator<=(SecureFixedHash const& _c) const { return static_cast<FixedHash<T> const&>(*this).operator<=(static_cast<FixedHash<T> const&>(_c)); }
    	bool operator>(SecureFixedHash const& _c) const { return static_cast<FixedHash<T> const&>(*this).operator>(static_cast<FixedHash<T> const&>(_c)); }
    
    	using FixedHash<T>::operator==;
    	using FixedHash<T>::operator!=;
    	using FixedHash<T>::operator<;
    	using FixedHash<T>::operator>=;
    	using FixedHash<T>::operator<=;
    	using FixedHash<T>::operator>;
    
    	// The obvious binary operators.
    	SecureFixedHash& operator^=(FixedHash<T> const& _c) { static_cast<FixedHash<T>&>(*this).operator^=(_c); return *this; }
    	SecureFixedHash operator^(FixedHash<T> const& _c) const { return SecureFixedHash(*this) ^= _c; }
    	SecureFixedHash& operator|=(FixedHash<T> const& _c) { static_cast<FixedHash<T>&>(*this).operator^=(_c); return *this; }
    	SecureFixedHash operator|(FixedHash<T> const& _c) const { return SecureFixedHash(*this) |= _c; }
    	SecureFixedHash& operator&=(FixedHash<T> const& _c) { static_cast<FixedHash<T>&>(*this).operator^=(_c); return *this; }
    	SecureFixedHash operator&(FixedHash<T> const& _c) const { return SecureFixedHash(*this) &= _c; }
    
    	SecureFixedHash& operator^=(SecureFixedHash const& _c) { static_cast<FixedHash<T>&>(*this).operator^=(static_cast<FixedHash<T> const&>(_c)); return *this; }
    	SecureFixedHash operator^(SecureFixedHash const& _c) const { return SecureFixedHash(*this) ^= _c; }
    	SecureFixedHash& operator|=(SecureFixedHash const& _c) { static_cast<FixedHash<T>&>(*this).operator^=(static_cast<FixedHash<T> const&>(_c)); return *this; }
    	SecureFixedHash operator|(SecureFixedHash const& _c) const { return SecureFixedHash(*this) |= _c; }
    	SecureFixedHash& operator&=(SecureFixedHash const& _c) { static_cast<FixedHash<T>&>(*this).operator^=(static_cast<FixedHash<T> const&>(_c)); return *this; }
    	SecureFixedHash operator&(SecureFixedHash const& _c) const { return SecureFixedHash(*this) &= _c; }
    	SecureFixedHash operator~() const { auto r = ~static_cast<FixedHash<T> const&>(*this); return static_cast<SecureFixedHash const&>(r); }
    
    	using FixedHash<T>::abridged;
    	using FixedHash<T>::abridgedMiddle;
    
    	bytesConstRef ref() const { return FixedHash<T>::ref(); }
    	byte const* data() const { return FixedHash<T>::data(); }
    
    	static SecureFixedHash<T> random() { SecureFixedHash<T> ret; ret.randomize(s_fixedHashEngine); return ret; }
    	using FixedHash<T>::firstBitSet;
    
    	void clear() { ref().cleanse(); }
    };
    
    /// Fast equality operator for h256.
    template<> inline bool FixedHash<32>::operator==(FixedHash<32> const& _other) const
    {
    	const uint64_t* hash1 = (const uint64_t*)data();
    	const uint64_t* hash2 = (const uint64_t*)_other.data();
    	return (hash1[0] == hash2[0]) && (hash1[1] == hash2[1]) && (hash1[2] == hash2[2]) && (hash1[3] == hash2[3]);
    }
    
    /// Stream I/O for the FixedHash class.
    template <unsigned N>
    inline std::ostream& operator<<(std::ostream& _out, FixedHash<N> const& _h)
    {
    	_out << toHex(_h);
    	return _out;
    }
    
    /// Stream I/O for the SecureFixedHash class.
    template <unsigned N>
    inline std::ostream& operator<<(std::ostream& _out, SecureFixedHash<N> const& _h)
    {
    	_out << "SecureFixedHash#" << std::hex << typename FixedHash<N>::hash()(_h.makeInsecure()) << std::dec;
    	return _out;
    }
    
    // Common types of FixedHash.
    using h2048 = FixedHash<256>;
    using h1024 = FixedHash<128>;
    using h520 = FixedHash<65>;
    using h512 = FixedHash<64>;
    using h256 = FixedHash<32>;
    using h160 = FixedHash<20>;
    using h128 = FixedHash<16>;
    using h64 = FixedHash<8>;
    using h512s = std::vector<h512>;
    using h256s = std::vector<h256>;
    using h160s = std::vector<h160>;
    using h256Set = std::set<h256>;
    using h160Set = std::set<h160>;
    using h256Hash = std::unordered_set<h256>;
    using h160Hash = std::unordered_set<h160>;
    
    /// Convert the given value into h160 (160-bit unsigned integer) using the right 20 bytes.
    inline h160 right160(h256 const& _t)
    {
    	h160 ret;
    	memcpy(ret.data(), _t.data() + 12, 20);
    	return ret;
    }
    
    inline std::string toString(h256s const& _bs)
    {
    	std::ostringstream out;
    	out << "[ ";
    	for (h256 const& i: _bs)
    		out << i.abridged() << ", ";
    	out << "]";
    	return out.str();
    }
    
    }