Skip to content
Snippets Groups Projects
Select Git revision
  • 19d0aa55f7d087e41c1fcbb86ae54174055bdeed
  • master default
  • windows_ci_static
  • c_link
  • cpack
  • windows_ci
  • cert_pk_id
  • proxy_push_result
  • cnode_put_id
  • update-windows-build
  • proxy
  • resubscribe_on_token_change
  • actions
  • client_mode
  • llhttp
  • search_node_add
  • crypto_aes_gcm_argon2
  • ios_notifications
  • log_fmt
  • v2asio
  • fix-msvc
  • v3.4.0
  • v3.3.1
  • v3.3.1rc1
  • v3.3.1rc2
  • v3.3.0
  • v3.2.0
  • v3.1.11
  • v3.1.10
  • v3.1.9
  • v3.1.8.2
  • v3.1.8.1
  • v3.1.8
  • v3.1.7
  • v3.1.6
  • v3.1.5
  • v3.1.4
  • v3.1.3
  • v3.1.2
  • v3.1
  • v3.0.1
41 results

peer_discovery.cpp

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    ip_utils.cpp 14.66 KiB
    /*
     *  Copyright (C) 2004-2020 Savoir-faire Linux Inc.
     *
     *  Author: Adrien Béraud <adrien.beraud@savoirfairelinux.com>
     *
     *  This program is free software; you can redistribute it and/or modify
     *  it under the terms of the GNU General Public License as published by
     *  the Free Software Foundation; either version 3 of the License, or
     *  (at your option) any later version.
     *
     *  This program is distributed in the hope that it will be useful,
     *  but WITHOUT ANY WARRANTY; without even the implied warranty of
     *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     *  GNU General Public License for more details.
     *
     *  You should have received a copy of the GNU General Public License
     *  along with this program; if not, write to the Free Software
     *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301 USA.
     */
    
    #include "ip_utils.h"
    #ifdef s_addr
    #undef s_addr
    #endif
    #include "logger.h"
    
    #include "sip/sip_utils.h"
    
    #include <sys/types.h>
    #include <unistd.h>
    #include <limits.h>
    
    #if defined(__ANDROID__) || defined(RING_UWP) || (defined(TARGET_OS_IOS) && TARGET_OS_IOS)
    #include "client/ring_signal.h"
    #endif
    
    #ifdef _WIN32
    #define InetPtonA inet_pton
    WINSOCK_API_LINKAGE INT WSAAPI InetPtonA(INT Family, LPCSTR pStringBuf, PVOID pAddr);
    #else
    #include <arpa/inet.h>
    #include <arpa/nameser.h>
    #include <resolv.h>
    #include <netdb.h>
    #include <netinet/ip.h>
    #include <net/if.h>
    #include <ifaddrs.h>
    #include <sys/ioctl.h>
    #endif
    
    #ifndef HOST_NAME_MAX
    #ifdef MAX_COMPUTERNAME_LENGTH
    #define HOST_NAME_MAX MAX_COMPUTERNAME_LENGTH
    #else
    // Max 255 chars as per RFC 1035
    #define HOST_NAME_MAX 255
    #endif
    #endif
    
    namespace jami {
    
    std::string
    ip_utils::getHostname()
    {
        char hostname[HOST_NAME_MAX];
        if (gethostname(hostname, HOST_NAME_MAX))
            return {};
        return hostname;
    }
    
    int
    ip_utils::getHostName(char* out, size_t out_len)
    {
        char tempstr[INET_ADDRSTRLEN];
        const char* p = NULL;
    #ifdef _WIN32
        struct hostent* h = NULL;
        struct sockaddr_in localAddr;
        memset(&localAddr, 0, sizeof(localAddr));
        gethostname(out, out_len);
        h = gethostbyname(out);
        if (h != NULL) {
            memcpy(&localAddr.sin_addr, h->h_addr_list[0], 4);
            p = inet_ntop(AF_INET, &localAddr.sin_addr, tempstr, sizeof(tempstr));
            if (p)
                strncpy(out, p, out_len);
            else
                return -1;
        } else {
            return -1;
        }
    #elif (defined(BSD) && BSD >= 199306) || defined(__FreeBSD_kernel__)
        int retVal = 0;
        struct ifaddrs* ifap;
        struct ifaddrs* ifa;
        if (getifaddrs(&ifap) != 0)
            return -1;
        // Cycle through available interfaces.
        for (ifa = ifap; ifa != NULL; ifa = ifa->ifa_next) {
            // Skip loopback, point-to-point and down interfaces.
            // except don't skip down interfaces if we're trying to get
            // a list of configurable interfaces.
            if ((ifa->ifa_flags & IFF_LOOPBACK) || (!(ifa->ifa_flags & IFF_UP)))
                continue;
            if (ifa->ifa_addr->sa_family == AF_INET) {
                if (((struct sockaddr_in*) (ifa->ifa_addr))->sin_addr.s_addr == htonl(INADDR_LOOPBACK)) {
                    // We don't want the loopback interface. Go to next one.
                    continue;
                }
                p = inet_ntop(AF_INET,
                              &((struct sockaddr_in*) (ifa->ifa_addr))->sin_addr,
                              tempstr,
                              sizeof(tempstr));
                if (p)
                    strncpy(out, p, out_len);
                else
                    retVal = -1;
                break;
            }
        }
        freeifaddrs(ifap);
        retVal = ifa ? 0 : -1;
        return retVal;
    #else
        struct ifconf ifConf;
        struct ifreq ifReq;
        struct sockaddr_in localAddr;
        char szBuffer[MAX_INTERFACE * sizeof(struct ifreq)];
        int nResult;
        int localSock;
        memset(&ifConf, 0, sizeof(ifConf));
        memset(&ifReq, 0, sizeof(ifReq));
        memset(szBuffer, 0, sizeof(szBuffer));
        memset(&localAddr, 0, sizeof(localAddr));
        // Create an unbound datagram socket to do the SIOCGIFADDR ioctl on.
        localSock = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
        if (localSock == INVALID_SOCKET)
            return -1;
        /* Get the interface configuration information... */
        ifConf.ifc_len           = (int) sizeof szBuffer;
        ifConf.ifc_ifcu.ifcu_buf = (caddr_t) szBuffer;
        nResult                  = ioctl(localSock, SIOCGIFCONF, &ifConf);
        if (nResult < 0) {
            close(localSock);
            return -1;
        }
        unsigned int i;
        unsigned int j = 0;
        // Cycle through the list of interfaces looking for IP addresses.
        for (i = 0u; i < (unsigned int) ifConf.ifc_len && j < MIN_INTERFACE;) {
            struct ifreq* pifReq = (struct ifreq*) ((caddr_t) ifConf.ifc_req + i);
            i += sizeof *pifReq;
            // See if this is the sort of interface we want to deal with.
            memset(ifReq.ifr_name, 0, sizeof(ifReq.ifr_name));
            strncpy(ifReq.ifr_name, pifReq->ifr_name, sizeof(ifReq.ifr_name) - 1);
            ioctl(localSock, SIOCGIFFLAGS, &ifReq);
            // Skip loopback, point-to-point and down interfaces.
            // except don't skip down interfaces if we're trying to get
            // a list of configurable interfaces.
            if ((ifReq.ifr_flags & IFF_LOOPBACK) || (!(ifReq.ifr_flags & IFF_UP)))
                continue;
            if (pifReq->ifr_addr.sa_family == AF_INET) {
                memcpy(&localAddr, &pifReq->ifr_addr, sizeof pifReq->ifr_addr);
                if (localAddr.sin_addr.s_addr == htonl(INADDR_LOOPBACK)) {
                    // We don't want the loopback interface. Go to the next one.
                    continue;
                }
            }
            j++; // Increment j if we found an address which is not loopback and is up.
        }
        close(localSock);
        p = inet_ntop(AF_INET, &localAddr.sin_addr, tempstr, sizeof(tempstr));
        if (p)
            strncpy(out, p, out_len);
        else
            return -1;
    #endif
        return 0;
    }
    std::string
    ip_utils::getGateway(char* localHost, ip_utils::subnet_mask prefix)
    {
        std::string localHostStr(localHost);
        if (prefix == ip_utils::subnet_mask::prefix_32bit)
            return localHostStr;
        std::string defaultGw {};
        std::istringstream iss(localHostStr);
        // Make a vector of each individual number in the ip address.
        std::vector<std::string> tokens;
        std::string token;
        while (std::getline(iss, token, '.')) {
            if (!token.empty())
                tokens.push_back(token);
        }
        // Build a gateway address from the individual ip components.
        for (unsigned int i = 0; i <= (unsigned int) prefix; i++)
            defaultGw += tokens[i] + ".";
        for (unsigned int i = (unsigned int) ip_utils::subnet_mask::prefix_32bit;
             i > (unsigned int) prefix + 1;
             i--)
            defaultGw += "0.";
        defaultGw += "1";
        return defaultGw;
    }
    
    std::string
    ip_utils::getDeviceName()
    {
    #if defined(__ANDROID__) || defined(RING_UWP) || (defined(TARGET_OS_IOS) && TARGET_OS_IOS)
        std::vector<std::string> deviceNames;
        emitSignal<DRing::ConfigurationSignal::GetDeviceName>(&deviceNames);
        if (not deviceNames.empty()) {
            return deviceNames[0];
        }
    #endif
        return getHostname();
    }
    
    std::vector<IpAddr>
    ip_utils::getAddrList(const std::string& name, pj_uint16_t family)
    {
        std::vector<IpAddr> ipList;
        if (name.empty())
            return ipList;
        if (IpAddr::isValid(name, family)) {
            ipList.push_back(name);
            return ipList;
        }
    
        static constexpr unsigned MAX_ADDR_NUM = 128;
        pj_addrinfo res[MAX_ADDR_NUM];
        unsigned addr_num = MAX_ADDR_NUM;
        const pj_str_t pjname(sip_utils::CONST_PJ_STR(name));
        auto status = pj_getaddrinfo(family, &pjname, &addr_num, res);
        if (status != PJ_SUCCESS) {
            JAMI_ERR("Error resolving %.*s : %s",
                     (int) name.size(),
                     name.c_str(),
                     sip_utils::sip_strerror(status).c_str());
            return ipList;
        }
    
        for (unsigned i = 0; i < addr_num; i++) {
            bool found = false;
            for (const auto& ip : ipList)
                if (!pj_sockaddr_cmp(&ip, &res[i].ai_addr)) {
                    found = true;
                    break;
                }
            if (!found)
                ipList.push_back(res[i].ai_addr);
        }
    
        return ipList;
    }
    
    bool
    ip_utils::haveCommonAddr(const std::vector<IpAddr>& a, const std::vector<IpAddr>& b)
    {
        for (const auto& i : a) {
            for (const auto& j : b) {
                if (i == j)
                    return true;
            }
        }
        return false;
    }
    
    IpAddr
    ip_utils::getLocalAddr(pj_uint16_t family)
    {
        IpAddr ip_addr {};
        pj_status_t status = pj_gethostip(family, ip_addr.pjPtr());
        if (status == PJ_SUCCESS) {
            return ip_addr;
        }
        JAMI_WARN("Could not get preferred address familly (%s)",
                  (family == pj_AF_INET6()) ? "IPv6" : "IPv4");
        family = (family == pj_AF_INET()) ? pj_AF_INET6() : pj_AF_INET();
        status = pj_gethostip(family, ip_addr.pjPtr());
        if (status == PJ_SUCCESS) {
            return ip_addr;
        }
        JAMI_ERR("Could not get local IP");
        return ip_addr;
    }
    
    IpAddr
    ip_utils::getInterfaceAddr(const std::string& interface, pj_uint16_t family)
    {
        if (interface == DEFAULT_INTERFACE)
            return getLocalAddr(family);
    
        IpAddr addr {};
    
    #ifndef _WIN32
        const auto unix_family = family == pj_AF_INET() ? AF_INET : AF_INET6;
    
        int fd = socket(unix_family, SOCK_DGRAM, 0);
        if (fd < 0) {
            JAMI_ERR("Could not open socket: %m");
            return addr;
        }
    
        if (unix_family == AF_INET6) {
            int val = family != pj_AF_UNSPEC();
            if (setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, (void*) &val, sizeof(val)) < 0) {
                JAMI_ERR("Could not setsockopt: %m");
                close(fd);
                return addr;
            }
        }
    
        ifreq ifr;
        strncpy(ifr.ifr_name, interface.c_str(), sizeof ifr.ifr_name);
        // guarantee that ifr_name is NULL-terminated
        ifr.ifr_name[sizeof(ifr.ifr_name) - 1] = '\0';
    
        memset(&ifr.ifr_addr, 0, sizeof(ifr.ifr_addr));
        ifr.ifr_addr.sa_family = unix_family;
    
        ioctl(fd, SIOCGIFADDR, &ifr);
        close(fd);
    
        addr = ifr.ifr_addr;
        if (addr.isUnspecified())
            return getLocalAddr(addr.getFamily());
    #else  // _WIN32
        struct addrinfo hints;
        struct addrinfo* result = NULL;
        struct sockaddr_in* sockaddr_ipv4;
        struct sockaddr_in6* sockaddr_ipv6;
    
        ZeroMemory(&hints, sizeof(hints));
    
        DWORD dwRetval = getaddrinfo(interface.c_str(), "0", &hints, &result);
        if (dwRetval != 0) {
            JAMI_ERR("getaddrinfo failed with error: %lu", dwRetval);
            return addr;
        }
    
        switch (result->ai_family) {
            sockaddr_ipv4 = (struct sockaddr_in*) result->ai_addr;
            addr          = sockaddr_ipv4->sin_addr;
            break;
        case AF_INET6:
            sockaddr_ipv6 = (struct sockaddr_in6*) result->ai_addr;
            addr          = sockaddr_ipv6->sin6_addr;
            break;
        default:
            break;
        }
    
        if (addr.isUnspecified())
            return getLocalAddr(addr.getFamily());
    #endif // !_WIN32
    
        return addr;
    }
    
    std::vector<std::string>
    ip_utils::getAllIpInterfaceByName()
    {
        std::vector<std::string> ifaceList;
        ifaceList.push_back("default");
    #ifndef _WIN32
        static ifreq ifreqs[20];
        ifconf ifconf;
    
        ifconf.ifc_buf = (char*) (ifreqs);
        ifconf.ifc_len = sizeof(ifreqs);
    
        int sock = socket(AF_INET6, SOCK_STREAM, 0);
    
        if (sock >= 0) {
            if (ioctl(sock, SIOCGIFCONF, &ifconf) >= 0)
                for (unsigned i = 0; i < ifconf.ifc_len / sizeof(ifreq); ++i)
                    ifaceList.push_back(std::string(ifreqs[i].ifr_name));
    
            close(sock);
        }
    
    #else
        JAMI_ERR("Not implemented yet. (iphlpapi.h problem)");
    #endif
        return ifaceList;
    }
    
    std::vector<std::string>
    ip_utils::getAllIpInterface()
    {
        pj_sockaddr addrList[16];
        unsigned addrCnt = PJ_ARRAY_SIZE(addrList);
    
        std::vector<std::string> ifaceList;
    
        if (pj_enum_ip_interface(pj_AF_UNSPEC(), &addrCnt, addrList) == PJ_SUCCESS) {
            for (unsigned i = 0; i < addrCnt; i++) {
                char addr[PJ_INET6_ADDRSTRLEN];
                pj_sockaddr_print(&addrList[i], addr, sizeof(addr), 0);
                ifaceList.push_back(std::string(addr));
            }
        }
    
        return ifaceList;
    }
    
    std::vector<IpAddr>
    ip_utils::getLocalNameservers()
    {
        std::vector<IpAddr> res;
    #if defined __ANDROID__ || defined _WIN32 || TARGET_OS_IPHONE
    #ifdef _MSC_VER
    #pragma message(__FILE__ "(" STR2(__LINE__) ") : -NOTE- " \
                                                "Not implemented")
    #else
    #warning "Not implemented"
    #endif
    #else
        if (not(_res.options & RES_INIT))
            res_init();
        res.insert(res.end(), _res.nsaddr_list, _res.nsaddr_list + _res.nscount);
    #endif
        return res;
    }
    
    bool
    IpAddr::isValid(const std::string& address, pj_uint16_t family)
    {
        const pj_str_t pjstring(sip_utils::CONST_PJ_STR(address));
        pj_str_t ret_str;
        pj_uint16_t ret_port;
        int ret_family;
        auto status = pj_sockaddr_parse2(pj_AF_UNSPEC(), 0, &pjstring, &ret_str, &ret_port, &ret_family);
        if (status != PJ_SUCCESS || (family != pj_AF_UNSPEC() && ret_family != family))
            return false;
    
        char buf[PJ_INET6_ADDRSTRLEN];
        pj_str_t addr_with_null = {buf, 0};
        pj_strncpy_with_null(&addr_with_null, &ret_str, sizeof(buf));
        struct sockaddr sa;
        return inet_pton(ret_family == pj_AF_INET6() ? AF_INET6 : AF_INET, buf, &(sa.sa_data)) == 1;
    }
    
    bool
    IpAddr::isUnspecified() const
    {
        switch (addr.addr.sa_family) {
        case AF_INET:
            return IN_IS_ADDR_UNSPECIFIED(&addr.ipv4.sin_addr);
        case AF_INET6:
            return IN6_IS_ADDR_UNSPECIFIED(reinterpret_cast<const in6_addr*>(&addr.ipv6.sin6_addr));
        default:
            return true;
        }
    }
    
    bool
    IpAddr::isLoopback() const
    {
        switch (addr.addr.sa_family) {
        case AF_INET: {
            auto addr_host = ntohl(addr.ipv4.sin_addr.s_addr);
            uint8_t b1     = (uint8_t)(addr_host >> 24);
            return b1 == 127;
        }
        case AF_INET6:
            return IN6_IS_ADDR_LOOPBACK(reinterpret_cast<const in6_addr*>(&addr.ipv6.sin6_addr));
        default:
            return false;
        }
    }
    
    bool
    IpAddr::isPrivate() const
    {
        if (isLoopback()) {
            return true;
        }
        switch (addr.addr.sa_family) {
        case AF_INET: {
            auto addr_host = ntohl(addr.ipv4.sin_addr.s_addr);
            uint8_t b1, b2;
            b1 = (uint8_t)(addr_host >> 24);
            b2 = (uint8_t)((addr_host >> 16) & 0x0ff);
            // 10.x.y.z
            if (b1 == 10)
                return true;
            // 172.16.0.0 - 172.31.255.255
            if ((b1 == 172) && (b2 >= 16) && (b2 <= 31))
                return true;
            // 192.168.0.0 - 192.168.255.255
            if ((b1 == 192) && (b2 == 168))
                return true;
            return false;
        }
        case AF_INET6: {
            const pj_uint8_t* addr6 = reinterpret_cast<const pj_uint8_t*>(&addr.ipv6.sin6_addr);
            if (addr6[0] == 0xfc)
                return true;
            return false;
        }
        default:
            return false;
        }
    }
    
    } // namespace jami